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We study a spatial two-strategy �cooperation and defection� prisoner’s dilemma game with two types �A and
B� of players located on the sites of a square lattice. The evolution of strategy distribution is governed by
iterated strategy adoption from a randomly selected neighbor with a probability depending on the payoff
difference and also on the type of the neighbor. The strategy adoption probability is reduced by a prefactor
�w�1� from the players of type B. We consider the competition between two opposite effects when increasing
the number of neighbors �k=4, 8, and 24�. Within a range of the portion of influential players �type A� the
inhomogeneous activity in strategy transfer yields a relevant increase �dependent on w� in the density of
cooperators. The noise dependence of this phenomenon is also discussed by evaluating phase diagrams.
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The investigation of the spatial evolutionary prisoner’s
dilemma �PD� games expands progressively since Nowak
and May �1� reported the maintenance of cooperative behav-
ior among selfish players. In these models the PD game �2�
represents a pair interaction between two players who can
either cooperate �C� or defect �D� and their income depends
on both choices in a way forcing both rational �selfish� play-
ers to choose D while they would share equally the maxi-
mum total payoff for mutual cooperation.

In the first model the players are located on a square lat-
tice, they can follow one of the two pure strategies �D and C�
and their income comes from PD games with the neighbors.
During a synchronized strategy update the players adopt the
strategy from the neighbor receiving the highest score. After
this pioneering work many modified versions of the original
model have been suggested and studied �for recent surveys
see Refs. �3,4��. Let us mention only a couple of examples:
in some models a larger set of strategies was used �5–7�, in
the evolutionary rules noises �8–10� were introduced that can
help the cooperative behavior �11–13�, and the spatial struc-
ture was also extended by locating the players on different
graphs giving a better description about the connections in
human societies �14–17�. In the last years the concept of
interaction and learning graphs have been distinguished
�18–20� and the research of the coevolution of strategy dis-
tribution and these graphs has also become a promising topic
�21–23�. It is found, furthermore, that different types of per-
sonality �24,25� and inhomogeneous activity in the strategy
adoption can also support cooperation �15,26–28� particu-
larly if some distinguished players have higher influence to
spread their strategies �29,30�.

In the latter case the relevant increase in the frequency of
cooperators is related to a phenomenon described previously
by Santos et al. �31,32� who studied evolutionary PD games
on scale-free networks with an evolutionary rule exploiting
the high income for players �called hubs� who have a large
number of neighbors. As a result, on the scale-free networks
the strategy of hubs becomes an example to be followed by
their neighborhood. Thus, the hubs as influential players face
the consequence of the imitation of their own strategy that
increases �decreases� the income of cooperative �defective�

hubs. After a short transient process this phenomenon favors
the spreading of cooperation because the influential players
can also adopt strategy from each other for suitable connec-
tivity structures. Evidently, in the absence of links between
influential players the mentioned mechanism cannot help co-
operators to beat defectors �31–33�. Recent studies �30,34�
have indicated that the presence of linked influential players
on scale-free graphs can efficiently promote cooperation
�even for normalized payoffs� if the capability of strategy
spreading differs from player to player. These results raise
many interesting questions about the impact of the size of a
neighborhood on the frequency of cooperators for inhomo-
geneous activity in the strategy transfer.

In the present work we study the competition between
two opposite effects emerging if the average number of
neighbors is increased. On one hand, the above described
mechanism �supporting the spreading of cooperation for in-
homogeneous strategy transfer capability� is enhanced when
choosing larger and larger k. On the other hand, the increase
of the number of neighbors k is beneficial for defectors on
regular networks �32,35–40�. Here it is worth mentioning
that the mean-field approximation �predicting the extinction
of cooperators in the evolutionary PD games �3,4�� gives a
simple explanation of this phenomenon. The scope of the
present paper is to explore the impact of these two opposite
effects by comparing results obtained for three different sizes
of neighborhoods. More precisely, the studied types of neigh-
borhood are the von Neumann neighborhood including only
the nearest neighbors �k=4�, the Moore neighborhood with
nearest and next-nearest neighbors �k=8�, and the case of k
=24 where players within a 5�5 box of sites are neighbors
of the central player �self-interaction is excluded�. Monte
Carlo �MC� simulations are used to study systematically the
effects of payoff, number of neighbors, and inhomogeneous
capability of strategy transfer �for a fixed noise level� on the
average number of cooperators.

For these evolutionary PD game models two types of
players �nx=A or B� are located on the sites x of a square
lattice with a concentration of � and �1−�� and their random
initial distribution remains unchanged �quenched� during the
simulations. The income of player x comes from one-shot
PD games with her neighbors, that is,
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Px = �
y��x

sx · A · sy , �1�

where the sum runs over all neighboring sites ��x� of player
x, the payoff matrix is defined as suggested by Nowak and
May �1�,

A = �0 b

0 1
�, 1 � b � 2, �2�

and the defective and cooperative strategies are denoted by
unit vectors as

sx = D = �1

0
� or C = �0

1
� . �3�

The evolution of strategy distribution is governed by random
sequential strategy update representing strategy adoption
from a randomly chosen site y to one of its neighbors x with
a probability

W�sx ← sy� = wy
1

1 + exp��Px − Py�/kK�
�4�

dependent on the difference of normalized payoffs �e.g.,
�Px− Py� /k� for later convenience of comparisons. For this
strategy adoption probability the meaning of the parameter K
is analogous to the temperature as introduced in the kinetic
Ising model and characterizes the magnitude of payoff noise
affecting the decision of player x �9,10�. The multiplicative
factor wy denotes the strategy transfer capability of player y,

wy = �1, if ny = A

w , if ny = B
	, 0 � w � 1. �5�

In this notation players of type A represent those individuals
who can easily convince their neighbors to adopt the strategy
they are just following. This personal feature can be related
to age, reputation, etc.

For all the three cases studied here the simulations are
performed on an L�L square of sites with periodic boundary
conditions. The evolution of the spatial distribution of the C
and D strategies starts from an uncorrelated initial state
where cooperators and defectors are present with the same
probability. When repeating the above described elementary
steps the system develops into a final stationary state char-
acterized by the average density of cooperators ���. After a
suitable relaxation time tr � is determined by averaging the
density of cooperators over a time ta. Typical �maximum�
values of parameters used in our simulations are the follow-
ing: L=400 �1600� and tr
 ta=104 �106� MCS �during one
MC step �MCS� each player has a chance once on average to
adopt one of the neighboring strategies�. Pronounced long
relaxations were observed at the large noise limit.

Before discussing the behaviors of the above systems we
briefly recall some general features of the homogeneous sys-
tem ��=0 or 1� �41�. The average �total� payoff increases
monotonously with � independent of the initial strategy dis-
tribution. Furthermore, in each homogeneous system the
value of � decreases monotonously from 1 to 0 if b is in-
creased within a region of b �bc1

�k��K��b�bc2
�k��K��, where the

strategies C and D coexist. For all the three types of neigh-

borhoods bc1
�k��K� �bc2

�k��K�� tends to 1 from below �above� if
K→�. In other words, in the strong noise limit �K→�� the
systems reproduce the behavior of the mean-field model, that
is, � drops suddenly from 1 to 0 at b=1. In the opposite case
�K→0� the limit values of bc1

�k� and bc2
�k� depend on k. When

decreasing K the upper critical value of b tends monoto-
nously to a value bc1

�k��0� larger than 1 if k=8 or 24. On the
contrary, for k=4, the function bc2

�4��K� has a local maximum
at K=Kopt
0.08 �bc2

�4��K=Kopt�
1.08� and approaches 1 if
K→0.

In the light of the above results we first study the density
of cooperators ��� when varying the portion of players of
type A for fixed values of payoff �b�, strategy transfer capa-
bility �w�, and noise �K�. The latter was chosen to present
optimal cooperation for the k=4 system �i.e., K�Kopt�. The
MC data are compared in Fig. 1 for the three types of neigh-
borhood. For the sake of comparison, we selected such a
high value of b, which prevents cooperation in the homoge-
neous model of k=24. Figure 1 shows that the highest den-
sity of cooperators can be observed �at �=0 or 1� for k=8
where the overlapping triangles in the connectivity structure
support the spreading �maintenance� of cooperation as dis-
cussed in Ref. �12�. The further increase of k, however,
yields a decrease in both � and bc2

�k� �32� tending to the be-
havior of mean-field model. This is the reason why coopera-
tors become extinct in the final stationary state for the homo-
geneous system at k=24.

Figure 1 demonstrates clearly the existence of an opti-
mum composition �defined by the maximum in �� of the
players A and B. The presence of distinguished players re-
sults in a relatively higher impact on cooperation level for
larger k. In agreement with the expectations, the more neigh-
bors the players have, the smaller portion of influential play-
ers �type A� are capable to achieve the highest increase in �.
The resultant asymmetry can be observed in the function
���� for k=24. For the largest neighborhood our simulations
have clearly indicated that cooperators can remain alive only
within a region of � with boundaries dependent on w and
K. It is expected that this region, �1�w ,K�����2�w ,K�,
shrinks if we increase k further.

As the largest effect is found for the largest neighborhood,
henceforth our attention will be focused on the system of k
=24. Figure 2 illustrates the increase of the density of coop-
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FIG. 1. Density of cooperators as a function of the portion of A
players if b=1.05, K=0.1, and w=0.1 for three different neighbor-
hoods: k=4 �open squares�, 8 �closed squares�, and 24 �closed
triangles�.

GYÖRGY SZABÓ AND ATTILA SZOLNOKI PHYSICAL REVIEW E 79, 016106 �2009�

016106-2



erators when varying the composition of players A and B for
several values of w at a fixed payoff and noise level. When
the difference is small, typically when 1 /w	2, the coopera-
tors cannot remain alive at the given payoffs and noise inde-
pendently of the actual composition of A and B players. If
the ratio 1 /w is increased then the cooperators can survive
within the above mentioned region of �. This interval be-
comes wider and wider while the maximum value of � in-
creases monotonously until reaching its saturation value ��
=1�. Consequently, we can observe four subsequent transi-
tions in Fig. 2 if � increased for sufficiently high values of
the ratio 1 /w. Apparently the density of cooperators tends to
a limit profile if 1 /w→�. We have to emphasize that the
rigorous analysis of the asymptotic behavior becomes diffi-
cult because the transient time increases with the ratio 1 /w
particularly at small values of �.

We have also studied the effect of the variation of w on
the cooperation level at different payoffs �b�. To avoid addi-
tional effects the noise level is fixed at a composition ��
=0.2� close to its optimum value. The results, summarized in
Fig. 3, illustrates that the curves ��b� shift to larger b values
if the ratio 1 /w is increased. �For comparison, the left curve
shows the results obtained in the homogeneous system.� The
plotted results refer to a shift proportional to ln�1 /w�. Due to
the above mentioned increasing run time, if we choose larger
values of 1 /w, the more rigorous �numerical� confirmation of
this trend goes beyond the scope of the present work. Instead

of it we have concentrated on the effect of noise for the two
extreme neighborhoods �k=4 and 24� at a fixed portion of
players A and B. For this purpose we have performed sys-
tematic MC simulations to determine the critical values
bc1 and bc2 for a fixed ratio of strategy transfer capability
�1 /w=50�.

Figure 4 can be interpreted as a phase diagram where the
connected data represent phase boundaries. Between the up-
per and lower critical points strategies C and D coexist.
Above �below� this region only defectors �cooperators� re-
main alive in the final stationary states. For both cases the
system behavior is not affected by the spatial inhomogene-
ities in the low noise limit, in agreement with the previous
results �29�. In other words, the relevant improvement in the
maintenance of cooperation appears in the noisy systems
even for the limit K→�. In contrary to the prediction of
mean-field theory the present data indicate clearly that coop-
erators and defectors can coexist within a region of b if K
goes to infinity, that is, bc1 and bc2 tend to two distinct limit
values for both types of neighborhoods. This latter feature
has already been confirmed qualitatively by the pair approxi-
mation for k=4 �29�. Notice, furthermore, that the larger
neighborhood yields a larger increase in the value of bc1 and
bc2 when applying optimum composition of players A and B
for both systems.

In summary, within the framework of evolutionary PD
games, the present investigation of the effect of the inhomo-
geneous strategy transfer capability on the cooperative be-
havior has indicated a relevant increase in the density of
cooperators if the fraction of influential players was close to
the optimum value dependent on the number of neighbors
�range of interaction� if two types of strategy transfer capa-
bility �represented by the players A and B� are distinguished.
It is found that the larger neighborhood with a smaller frac-
tion of influential players �type A� can be more beneficial for
the whole system due to the imitation mechanism rewarding
�punishing� cooperation �defection� for the influential play-
ers. The improvement of cooperation increases with the ratio
of strategy transfer capability �1 /w� between players of type
A and B. Furthermore, the maintenance of cooperation is
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FIG. 2. Density of cooperators vs � for five different values of
the reduced strategy transfer capability �w=0.01, 0.02, 0.05, 0.1,
and 0.2 from top to bottom� at b=1.05, k=24, and K=0.1.
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FIG. 3. Density of cooperators as a function of b for different
values of 1 /w �w=1, 0.2, 0.05, 0.02, and 0.005 from left to right� at
fixed noise level �K=0.1�, composition ��=0.2�, and neighborhood
�k=24�.
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FIG. 4. The upper and lower critical values of b for k=24 and
�=0.2 �open squares connected with dashed lines�. Results for k
=4 and �=0.5 are denoted by closed squares �connected with solid
lines� at w=0.02. The dotted line illustrates the prediction of mean-
field approximation in the homogeneous system �bc1

�MF�=bc2
�MF�=1

for arbitrary K�.
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supported remarkably by the mentioned effect in the high
noise limit where the region of coexistence is broadened and
shifted to higher values of b. For a small fraction of players
A one can think that the competition between the influential
players surrounded by their followers can be characterized
by an effective �rescaled� payoff matrix favoring cooperation
�as it appears on evolving networks �21�� while their compe-
titions are disturbed by those players of type B who do not

belong to the neighborhood of any influential player. These
latter B players can mediate an interaction between the influ-
ential players and/or preserve the defective behavior. Further
research is requested to clarify the relevance of these oppo-
site effects.

This work was supported by the Hungarian National Re-
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